CONSCRIPTING YOUR KIDS INTO
BUDING SERVIGE

nnnnnnnnnn



30.

..probably not all of you have kids..



BUI..

.you might recognize something like this:



MY SPACESHIP IS FASTER!



*

o o
N~ &

NO! MY SPACESRIP IS FASTER!



BUT MY SPACESHIP IS FASTER STILL!



&

N~ &

AND MY SPACESRIP IS FASTER STILL STILL!



-

MY SPACESRIP IS ALWAYS ONE HUNDRED FASTER THAN
YOURS!




&

N~ &

AND MY SPACESHIP IS ALWAYS ONE THOUSAND MILLION
FASTER THAN YOURS!




4

Ad infinitum

=



HOWEVER!

This is the perfect moment to bring up the topic of recursive functions!




DEFINITION

A recursive function, in logic and mathematics, is a
type of function or expression predicating some
concept or property of one or more variables, which is
specified by a procedure that yields values or instances
of that function by repeatedly applying a given relation
or routine operation to known values of the function.

Encyclopaedia Britannica


https://www.britannica.com/science/recursive-function

CODING TIME!



RECURSION

Square one

long spaceship_speed(long start_speed) {
return spaceship_speed(++start_speed);
h

int main() {
return spaceship_speed(1);

}



RECURSION

All the hip kids use lambdas

int main() {
auto spaceship_speed =
[&] (long start_speed) {
return spaceship_speed(++start_speed);

v

return spaceship_speed(1);

}



RECURSION

Whoops. C++17 to the rescue!

#1nclude <functional>

int main() {
std: :function<long(long)> spaceship_speed =
[&] (long start_speed) {
return spaceship_speed(++start_speed);

+s

return spaceship_speed(1);

}



RECURSION

Even hipper kids do compile-time code

constexpr long spaceship_speed(long start_speed) {
return spaceship_speed(++start_speed);

}

int main() {
return spaceship_speed(1);

}



RECURSION

Even hipper kids do compile-time code

constexpr long spaceship_speed(long start_speed) {
return spaceship_speed(++start_speed);

}

int main() {
return spaceship_speed(1);

}

..or do they?



RECURSION

Uh-oh..

constexpr long spaceship_speed(long start_speed) {
return spaceship_speed(++start_speed);
h

template<long VALUE>
struct Omgwtf { long value_ = VALUE; };

int main() {
return OmgwWtf<spaceship_speed(1)>{}.value_;

}



RECURSION

Oh dear

constexpr long spaceship_speed(long start_speed) {
return spaceship_speed(++start_speed);
h

template<typename TYPE, TYPE VALUE>
struct Omgwtf { TYPE value_ = VALUE; };

int main() {
constexpr auto value = spaceship_speed(1);
return OmgWtf<decltype(value), value>{}.value_;

}



RECURSION

Again, all the hip kids use lambdas

constexpr long spaceship_speed(long start_speed) {
return spaceship_speed(++start_speed);

}

template<typename TYPE, TYPE VALUE>
struct Omgwtf { TYPE value_ = VALUE; };

int main() {
const auto get_value = []() {
constexpr auto value = spaceship_speed(1l);
return Omgwtf<decltype(value), value>{}.value_;

+s

return get_value();

}



RECURSION

lIFE to complete the mess

constexpr long spaceship_speed(long start_speed) {
return spaceship_speed(++start_speed);

}

template<typename TYPE, TYPE VALUE>
struct Omgwtf { TYPE value_ = VALUE; };

int main() {
return [] {
constexpr auto value = spaceship_speed(1);
return Omgwtf<decltype(value), value>{}.value_;

1Ok






IDENTIFYING RECRUITMENT
OPPORTUNITIES




MULTI-THREADING ISSUES

Multiple children == multithreading issues



T0Y-SHARING HELL

Toys are resources; races and deadlocks occur.



T0Y-SHARING HELL

Toys are resources; races and deadlocks occuir.

All the time.



ANOTHER ONE: RESOURCE OVERCOMMITMENT

Holidays, birthday parties anyone?




ANOTHER ONE: RESOURCE OVERCOMMITMENT

Holidays, birthday parties anyone?

| guess you get it by now.



ONE LAST EXAMPLE



Hey, would you please clean up your toys?






Hey, would you please clean up your toys?






HEY, now will you please clean up your toys?






GLEAN UP YOUR TOYS!



Sigh.



WRITE-ONLY-MEMORY

Emnntin FULLY ENCODED, 9046 X N, RANDOM ACCESS | 25120

DESCRIPTION

The Signetics 25000 Series 9C46XN Random Access Write-
Only-Memory employs both enhancement and depletion mode
P-Channel, N-Channel and Neu'" channel MOS devices.
Although a static device, a single TTL level clock phase is
required to drive the on-board multi-port clock generator. Data
refresh is accomplished during CB and LH periods "". Quadri-
state outputs (when applicable) allow expansion in many
directions, depending on organization.

The static memory cells are operated dynamically to yield
extremely low power dissipation. All inputs and outputs are
directly TL compatible when proper interfacing circuitry is
employed.

FINAL SPECIFICATION"?

INPUT PROTECTION

All terminals are provided with slip-on latex protectors for the
prevention of Voltage Destruction. (PILL packaged devices do not

require protection.)

SILICON PACKAGING

Low cost silicon DIP packaging is implemented and reliability is
assured by the use of a non-hermetic sealing technique which
prevents the entrapment of harmful ions,, but which allows the free
exchange of friendly ions.

SPECIAL FEATURES



Thanks!



