
CONSCRIPTING YOUR KIDS INTO
CODING SERVICE

Kris van Rens

November 21st, 2019

SO..
..probably not all of you have kids..

BUT..
..you might recognize something like this:

MY SPACESHIP IS FASTER!

NO! MY SPACESHIP IS FASTER!

BUT MY SPACESHIP IS FASTER STILL!

AND MY SPACESHIP IS FASTER STILL STILL!

MY SPACESHIP IS ALWAYS ONE HUNDRED FASTER THAN
YOURS!

AND MY SPACESHIP IS ALWAYS ONE THOUSAND MILLION
FASTER THAN YOURS!

Ad in�nitum

HOWEVER!
This is the perfect moment to bring up the topic of recursive functions!

DEFINITION
A recursive function, in logic and mathematics, is a

type of function or expression predicating some
concept or property of one or more variables, which is

speci�ed by a procedure that yields values or instances
of that function by repeatedly applying a given relation

or routine operation to known values of the function.

Encyclopaedia Britannica

https://www.britannica.com/science/recursive-function

CODING TIME!

RECURSION
Square one

long spaceship_speed(long start_speed) {
 return spaceship_speed(++start_speed);
}

int main() {
 return spaceship_speed(1);
}

RECURSION
All the hip kids use lambdas

int main() {
 auto spaceship_speed =
 [&](long start_speed) {
 return spaceship_speed(++start_speed);
 };

 return spaceship_speed(1);
}

RECURSION
Whoops. C++17 to the rescue!

#include <functional>

int main() {
 std::function<long(long)> spaceship_speed =
 [&](long start_speed) {
 return spaceship_speed(++start_speed);
 };

 return spaceship_speed(1);
}

RECURSION
Even hipper kids do compile-time code

constexpr long spaceship_speed(long start_speed) {
 return spaceship_speed(++start_speed);
}

int main() {
 return spaceship_speed(1);
}

RECURSION
Even hipper kids do compile-time code

..or do they?

constexpr long spaceship_speed(long start_speed) {
 return spaceship_speed(++start_speed);
}

int main() {
 return spaceship_speed(1);
}

RECURSION
Uh-oh..

constexpr long spaceship_speed(long start_speed) {
 return spaceship_speed(++start_speed);
}

template<long VALUE>
struct OmgWtf { long value_ = VALUE; };

int main() {
 return OmgWtf<spaceship_speed(1)>{}.value_;
}

RECURSION
Oh dear

constexpr long spaceship_speed(long start_speed) {
 return spaceship_speed(++start_speed);
}

template<typename TYPE, TYPE VALUE>
struct OmgWtf { TYPE value_ = VALUE; };

int main() {
 constexpr auto value = spaceship_speed(1);
 return OmgWtf<decltype(value), value>{}.value_;
}

RECURSION
Again, all the hip kids use lambdas

constexpr long spaceship_speed(long start_speed) {
 return spaceship_speed(++start_speed);
}

template<typename TYPE, TYPE VALUE>
struct OmgWtf { TYPE value_ = VALUE; };

int main() {
 const auto get_value = []() {
 constexpr auto value = spaceship_speed(1);
 return OmgWtf<decltype(value), value>{}.value_;
 };

 return get_value();
}

RECURSION
IIFE to complete the mess

constexpr long spaceship_speed(long start_speed) {
 return spaceship_speed(++start_speed);
}

template<typename TYPE, TYPE VALUE>
struct OmgWtf { TYPE value_ = VALUE; };

int main() {
 return [] {
 constexpr auto value = spaceship_speed(1);
 return OmgWtf<decltype(value), value>{}.value_;
 }();
}

IDENTIFYING RECRUITMENT
OPPORTUNITIES

MULTI-THREADING ISSUES
Multiple children == multithreading issues

TOY-SHARING HELL
Toys are resources; races and deadlocks occur.

TOY-SHARING HELL
Toys are resources; races and deadlocks occur.

All the time.

ANOTHER ONE: RESOURCE OVERCOMMITMENT
Holidays, birthday parties anyone?

ANOTHER ONE: RESOURCE OVERCOMMITMENT
Holidays, birthday parties anyone?

I guess you get it by now.

ONE LAST EXAMPLE

Hey, would you please clean up your toys?

...

Hey, would you please clean up your toys?

...

HEY, now will you please clean up your toys?

...

CLEAN UP YOUR TOYS!

...
Sigh.

Thanks!

